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1
DECISION STREAMS FOR SYNCHRONIZING
VISUAL SCRIPT LANGUAGE PROCESSING
BETWEEN NETWORKED COMPUTERS

BACKGROUND

For certain applications, it is desirable to provide low
latency synchronization of logic states between networked
computers. This is especially important for real-time appli-
cations such as online video games, where near instant feed-
back is required for convincing interactivity. Additionally, to
provide design flexibility and to modularize engine program-
ming, it is desirable to control game logic using general-
purpose scripting languages, especially visual scripting lan-
guages that are amenable to creation by graphical user
interfaces (GUIs).

On the other hand, to keep logic states consistent between
networked computers, it is also desirable to have a single
arbiter for logic processing. For example, a networked multi-
player video game may need to determine a specific player to
receive credit for defeating an enemy, or the video game may
need to determine whether certain group-based or environ-
mental prerequisites are satisfied before triggering an event.
Conventionally, each networked computer may offload such
game logic script processing to a centralized game server.
However, due to the latency introduced by round trip network
communications with the centralized game server, the goal of
low latency state synchronization becomes more difficult to
achieve.

SUMMARY

The present disclosure is directed to decision streams for
synchronizing visual script language processing between net-
worked computers, substantially as shown in and/or
described in connection with at least one of the figures, as set
forth more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 presents an exemplary diagram of a system for
providing decision streams for synchronizing visual script
language processing between networked computers;

FIG. 2A presents an exemplary diagram of a state graph
expressed by a visual script language;

FIG. 2B presents an exemplary diagram of a decision
stream for synchronizing the state graph of FIG. 2A between
networked computers;

FIG. 2C presents an exemplary diagram of a state graph
expressed by a visual script language;

FIG. 2D presents an exemplary diagram of decision
streams for synchronizing the state graph of FIG. 2C between
networked computers;

FIG. 3 presents an exemplary flowchart illustrating a
method by which decision streams may be provided for syn-
chronizing visual script language processing between net-
worked computers.

DETAILED DESCRIPTION

The following description contains specific information
pertaining to implementations in the present disclosure. One
skilled in the art will recognize that the present disclosure
may be implemented in a manner different from that specifi-
cally discussed herein. The drawings in the present applica-
tion and their accompanying detailed description are directed
to merely exemplary implementations. Unless noted other-
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wise, like or corresponding elements among the figures may
be indicated by like or corresponding reference numerals.
Moreover, the drawings and illustrations in the present appli-
cation are generally not to scale, and are not intended to
correspond to actual relative dimensions.

FIG. 1 presents an exemplary diagram of a system for
providing decision streams for synchronizing visual script
language processing between networked computers. Dia-
gram 100 of FIG. 1 includes client 110a, client 1105, server
120a, script database 130, network 135, display 140a, and
display 14056. Client 110a¢ includes processor 112a and
memory 114a. Memory 1144 includes game client applica-
tion 116a and private graphs 118a. Client 1105 includes
processor 1126 and memory 1145. Memory 11454 includes
game client application 1165 and private graphs 1185. Server
120a includes processor 122a and memory 124a. Memory
124a includes game server application 126a and master
graphs 128a. Script database 130 includes graph 132.

Diagram 100 illustrates a simplified topology for an exem-
plary multi-player online videogame. Accordingly, only two
clients 110a-1105 and one server 120a are shown. However,
alternative implementations may support a much larger num-
ber of clients and may provide multiple servers for load
balancing and/or reduced latency. Clients 110a-1105 and
server 120a may be any computing device, such as a desktop
computer, laptop computer, tablet, game console, or another
device. Network 135 may be a public network such as the
Internet, and may provide data links between clients 110a-
1104, server 120a, and script database 130.

Furthermore, while a conventional server and client model
is shown in diagram 100 of FIG. 1, a peer-to-peer network
may also be implemented, in which case all computing
devices may be considered both clients and servers, as appro-
priate. Devices may form local peer-to-peer networks and
distribute workloads based on user proximity within a virtual
environment, with at least one computing device being
dynamically designated as a “Master” computing device, cor-
responding to server 120a, for each peer-to-peer network.
Devices may also participate in multiple peer-to-peer net-
works concurrently. For example, a device with a particularly
high-speed and low-latency network connection may be pref-
erably designated as a “Master” device for servicing multiple
geographic areas of the virtual environment. The “Master”
device handles the receiving and distributing of decision
streams from other devices, as discussed in further detail
below.

Script database 130 may be populated by several state
graphs for implementing game logic, including graph 132 as
shown. The graphs of script database 130 may be generated
and edited using a visual script language creation tool, allow-
ing game designers to script game logic using a graphical user
interface (GUI). Alternatively, the graphs of script database
130 may also be provided using conventional text edited
scripts.

In one particular arrangement of script database 130,
graphs may be sorted and divided according to associated
locations within a virtual environment. Thus, clients 110a-
1105 may retrieve the required graphs from script database
130 according to the in-game location of their particular
character or avatar within their respective game client appli-
cations 116a-1165. For example, when game client applica-
tions 1164 and 1165 include a respective avatar in a shared
cave location, and when graph 132 is associated with the same
cave location, a copy of graph 132 may be retrieved and stored
within private graphs 118a and 1185.

Similarly, each online server may be assigned one or more
locations to host, which may change dynamically to imple-
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ment load balancing. Thus, server 120a may retrieve the
required graphs from script database 130 based on the loca-
tions to be hosted by game server application 126a. For
example, when server 120q is assigned to host the cave loca-
tion, a copy of graph 132 may be retrieved and stored within
master graphs 128a. If a large number of players enter the
cave location, a new server may be assigned to also host the
cave location. On the other hand, if a large number of players
move to a different location, then server 120a may be reas-
signed to host the different location.

In a multi-player online game, it is desirable to maintain a
high level of state synchronization between clients 110a-
1105 so that all users can experience a coherent virtual envi-
ronment, which is visually depicted on displays 140a-1405.
To provide this level of synchronization, clients 110a-1105
may send requests to server 120aq to finally arbitrate any game
logic affecting multiple clients. Thus, game client applica-
tions 1164-1165 may send requests to game server applica-
tion 1264 for evaluating multi-player game logic using master
graphs 128a. However, since communications over network
135 may be subject to some unavoidable latency, the total
time for receiving a response from server 120a may be sig-
nificant, resulting in undesirable lag between user actions and
the expected responses on displays 140a-1404.

FIG. 2A presents an exemplary diagram of a state graph
expressed by a visual script language. Graph 232a of FIG. 2A
includes several nodes including actor 250, exploder 252,
munition impact 254, gate 256, weapon compare 258, report
stat 260, shake camera 262, particle effect 264, and sound
effect 266. With respect to FIG. 2A, graph 232a may corre-
spond to graph 132 in FIG. 1.

As shown in FIG. 2A, graph 232a is organized in a visual
layout with several interconnected nodes for evaluating game
logic. Nodes may process one or more input functions, which
are labeled with circles aligned to the left side of each node.
Certain nodes, such as munition impact 254, may be consid-
ered a “kickoffnode” that can execute an anonymous function
without being triggered by an external input. After function
execution, nodes may also fire one or more output impulses,
which are labeled with circles aligned to the right side of each
node. These output impulses may surge through graph 232a
to trigger input functions of downstream nodes, and may be
connected to multiple downstream nodes, as shown in gate
256. Further, each node may contain one or more parameters,
indicated by diamonds, which may be passed between nodes.
The specific function logic of each node is omitted for sim-
plicity but may be inferred from the node title and the inputs
and outputs shown.

Graph 232a may represent a game scenario where actor
250is exploded by a munition impact 254 only when gate 256
is set to the “Open” state, which is controlled by some exter-
nal logic, not shown in FIG. 2A. For example, a player char-
acter controlled by client 110a may attempt to attack actor
250, which triggers the munition impact 254 kick-off node for
client 110a. At the time of impact, client 110a may populate
all the required parameters in munition impact 254 and send
the “Hit” output impulse to the “In” input function of weapon
compare 258, with “Weapon ID” passed as a parameter.

Moving to the next node, weapon compare 258 executes
logic for the “In” input function, comparing “Weapon 1D”
with “Weapon-A”, which may be set to a specific weapon 1D,
for example a shoulder charge. If the comparison is true, the
“True” output impulse is fired as shown; otherwise, the
“False” output impulse is fired.

Next, gate 256 executes logic for the “In” input function.
As shown in graph 232a, the “Open” input function is trig-
gered by another node that is not shown. After executing the
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“Open” input function, gate 256 may set an internal state
indicating an open status. The “In” input function may con-
firm that the internal state is set to “open” before sending an
“Out” output impulse. Otherwise, if the internal state is set to
“closed”, the “Blocked” output impulse may be fired instead.
As shown in FIG. 2A, the “Out” output impulse is connected
to multiple nodes, or exploder 252 and report stat 260. When
multiple output impulses are emitted and the branches are
independent of each other, the downstream node branches
may be processed serially in any order or alternatively in
parallel. Otherwise, the branches may be traversed serially
according to data dependencies.

Assuming exploder 252 is the first node to be processed,
the “Explode” input function is triggered using various
parameters, as listed. Since no additional output impulses are
fired at exploder 252, processing may proceed to nodes of the
next branch, beginning with report stat 260.

At report stat 260, the “Report” input function may record
the details of munition impact 254, for example by writing a
record in a database. The database may then be consulted by
the videogame to determine whether enough damage has
been inflicted on actor 250 to trigger an output impulse, and
also to determine the distribution of experience points,
money, and other rewards. After the recording, the “Out”
output impulse is fired, triggering the “In” input function of
shake camera 262.

Shake camera 262 may then provide a camera shaking
effect to the view of display 140a and 1405 in FIG. 1 accord-
ing to the various parameters as shown. Shake camera 262
may also fire the “Out” output impulse to trigger the “On
Transform” input function of particle eftect 264, which may
apply particle effects to the explosion in progress triggered by
exploder 252. The “Out” impulse of particle effect 264 in turn
triggers the “On” input function of sound effect 266, which
may play an explosion sound effect on display 140a of client
110a. At this point, since sound effect 266 has no further
output impulses, processing of the second and final branch
ends. If additional effects and processing are required, they
may be triggered from the “Begin” output impulse of sound
effect 266.

Referring back to FIG. 1, as previously discussed, a copy of
graph 132 corresponding to graph 232a of FIG. 2A may be
copied and locally stored in private graphs 118a, private
graphs 1185, and master graphs 128a. Thus, client 1104 and
client 1105 may have independent graph states that can differ
from each other as they are privately processed, leading to
inconsistent game states between clients. To keep graphs
synchronized, all state processing might be deferred to master
graphs 128a on server 120a. However, since each client must
wait for a response from server 120a over network 135, large
latency penalties may result, reducing game responsiveness
and detracting from gameplay.

Accordingly, FIG. 2B presents an exemplary diagram of a
decision stream for synchronizing the state graph of FIG. 2A
between networked computers. Decision stream 234 includes
record 236a, record 2365, and record 236¢. Each of records
236a-236¢ includes a stream entry field, a graph source node
field, a graph ID field, and a data field.

Decision stream 234 is a record of states and actions taken
based on those states. By creating and distributing decision
stream 234, other networked computers can follow a single
authoritative course of action to remain synchronized with
each other. The creation of a decision stream begins when a
kick-off nodeis processed. By default, akick-off node may be
marked as a “Master” node requiring global synchronization.
In this case, if a kick-off node is processed at a local client, the
local client only generates a Kickoff Stream that contains data
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regarding the specific event at the kick-off node, which may
also be considered as a special case single-entry decision
stream. Output impulses and surges that would be normally
fired are not fired; instead, the Kickoff Stream is passed as a
Remote Kickoff Stream to a Graph Master, for example
server 120a, which can then handle the creation of the actual
decision stream 234. A Kickoff callback function is also
registered for each client to handle the processing of decision
stream 234 when eventually received from network 135.

Once server 120a receives the Remote Kickoff Stream
from client 110a, server 120a can begin the actual process of
generating decision stream 234. First, as shown in record
2364, the details from the Remote Kickoff Stream are simply
copied over to decision stream 234. The “stream entry” field
enumerates the record and may indicate the desired order of
processing. The “graph source node” field references the
munition impact 254 node from graph 132, corresponding to
graph 232a. The “graph ID” field “ID1” may more specifi-
cally refer to the particular node within master graphs 128a.
Note that while at a minimum, only the first record needs to
have a graph ID as the graph ID of the remaining records may
be traced and derived from the first record, for ease of debug-
ging and tracing it may be preferable to record the graph ID
for each record in decision stream 234. The “data” field con-
tains all the parameters in munition impact 254.

After writing record 2364, server 120a may continue pro-
cessing graph 232q within master graphs 128a, adding new
records to decision stream 234 as necessary. Thus, the pro-
cessing of graph 232a continues as the parameters from
munition impact 254 are examined and a “Hit” output
impulse is accordingly sent to weapon compare 258. Since
the processing of weapon compare 258 is entirely dependent
on inputs and does not use any internal states, no records need
to be written to decision stream 234 regarding weapon com-
pare 258.

Continuing to gate 256, the processing of gate 256 on the
other hand requires a determination of the internal state of the
gate, or whether it is open or closed. Moreover, the state of
gate 256 may be independently affected by various clients.
Accordingly, record 2365 is written to decision stream 234 as
shown, with the state of gate 256 recorded as open. Since the
gate state is open, a outputimpulse is sent to exploder 252 and
report stat 260. For exploder 252, record 236¢ is written to
decision stream 234 as shown, reflecting the state of exploder
252. This is necessary since the explosion state may differ
between machines due to latency.

On the other hand, for the node branch starting with report
stat 260, no further records are required as none ofthe remain-
ing nodes require synchronization. For example, report stat
260 only requires writing a single record in a database without
any synchronization, and shake camera 262, particle effect
264, and sound effect 266 all relate to audiovisual effects that
can be locally processed by each client without synchroniza-
tion. Optionally, a “private net sync” node may be explicitly
inserted after report stat 260 to indicate that the remaining
nodes are to be processed locally on private graphs. Accord-
ingly, after reaching sound effect 266 or the private net sync
node, decision stream 234 may be finalized and sent back via
network 135 to all clients participating in the same game,
including client 110a and client 1105.

As discussed previously, each client may have a callback
function to handle the processing of decision stream 234 after
being received from network 135. The callback function will
mirror the processing of the relevant graph in the locally
stored graph, or a graph within private graphs 118a and 1185
for clients 110a and 11056 respectively. If node states are
inconsistent between the local graph and decision stream 234,
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the recorded states in decision stream 234 override the local
graph, thereby enforcing synchronization.

While graph 2324 may be synchronized using decision
stream 234, the latency result is suboptimal as much of the
same waiting time for server synchronization still occurs
when the kick-off node munition impact 254 is set to global
synchronization or “master” as per default settings for graph
232a. While this default setting allows game designers to
create logic graphs without having to consider synchroniza-
tion, manual or automated assignment of synchronization
settings to nodes also enables game designers to greatly opti-
mize game logic for minimal latency. Individual nodes may
be explicitly set to “private”, which do not require synchro-
nization, or “master”, which require global synchronization.
Modifier nodes, such as master net sync or private net sync
nodes, may also explicitly set the synchronization setting for
all downstream nodes. By identifying certain nodes as pri-
vate, these nodes can be processed locally and immediately at
each client for reduced latency.

Thus, turning to FIG. 2C, FIG. 2C presents an exemplary
diagram of a state graph expressed by a visual script language.
With respect to FIG. 2C, like numbers may correspond to like
elements from FIG. 2A. FIG. 2C also includes an additional
node not present in FIG. 2A, master net sync 268.

As shown in FIG. 2C, graph 2325 is modified from graph
232a such that munition impact 254 is set to “private” rather
than the default “master”. Additionally, master net sync 268 is
inserted prior to gate 256, the output impulses from gate 256
to exploder 252 and report stat 260 are transferred to weapon
compare 258, and the output impulse from report stat 260 to
shake camera 262 is transferred to weapon compare 258.
Accordingly, gate 256 and report stat 260 are set to “master”,
whereas all other nodes are set to “private”.

Since the kick-off node or munition impact 254 is set to
“private”, client 110a can take control and proceed to process
its own copy of graph 2325 within private graphs 118a, rather
than immediately sending a kick-off stream to a server. Thus,
client 110a can process graph 2325 and generate a private
decision stream, at least for those nodes that are set to “pri-
vate”. Accordingly, munition impact 254, weapon compare
258, exploder 252, shake camera 262, particle effect 264, and
sound effect 266 can all be processed and evaluated on client
110a without consulting or synchronizing with any outside
clients or servers.

The resulting decision stream is shown as private decision
stream 234a of FIG. 2D, which presents an exemplary dia-
gram of decision streams for synchronizing the state graph of
FIG. 2C between networked computers. As shown in private
decision stream 234a, client 110a only records entries 2364
and 236¢ for munition impact 254 and exploder 252, similar
to the processing of graph 2324 by server 110q as discussed
above. However, once processing on all private nodes is com-
pleted, nodes beyond master net sync 268 must be processed
onserver 120a, as these downstream nodes are set to “master”
requiring global synchronization.

Accordingly, prior to handing processing control to server
110a, private decision stream 234a may be sent to server
120a, which may be used to synchronize master graphs 128a.
To synchronize the private graphs on the remaining clients,
server 120a may distribute private decision stream 234a to the
other clients in the same game, including client 1105, so that
all clients can carry out the same actions as indicated in
private decision stream 234a. Advantageously, near instanta-
neous feedback is provided in response to user actions on the
client where the kick-off node originated, or client 110a,
since client 110a can process private nodes directly without
waiting for a decision stream from an outside source. Thus,
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the user of client 110a can appreciate immediate visual and
audio effects from a user initiated weapon attack. While other
clients such as client 1105 may render a slightly delayed
response since synchronization starts upon receiving private
decision stream 234a, the delayed response may be accept-
able since the effects are concerning the actions of other users
rather than the specific user of the client.

After server 120a distributes private decision stream 234a,
server 120a may begin the process of building its own master
decision stream 2345 for the remaining downstream nodes set
to master, or global synchronization. As shown in FIG. 2D,
master decision stream 2345 includes records 2367, 236g, and
2364. The stream building process may proceed similar to the
processing of graph 2324 by server 120a, as described above.
However, master net sync 268 rather than munition impact
254 triggers the creation of the remote kickoff stream, and
only the “Master” nodes of graph 2325 are processed.
Accordingly, a record 236/ for master net sync 268 may be
created as shown, which may include any optional input
parameters that are necessary for downstream node process-
ing. In the case of graph 2325, since only the “True” output
impulse is sent to master net sync 268 from weapon compare
258, no parameters are necessary in the data field of record
236f. Record 236g may be added to record the state of gate
256. Record 236/ may be added with an empty data field to
simply indicate that the report stat 260 node was processed
successfully, as the report stat 260 node may write a record
into a database which has its own synchronization facilities.

Server 120a may distribute the completed master decision
stream 23456 to all relevant clients, including client 110a and
1104, for final synchronization. For record 236g, each client
may update in their respective private graphs the state of gate
256 to “open” as indicated in the data field. For record 236/,
since the data field is empty, each client may independently
query the relevant values from the database used by report stat
260 to calculate total damage inflicted on actor 250. After
distributing and processing master decision stream 2345 for
each client, all processing and network synchronization of
graph 2325 originating from the munition impact 254 kick-
offnode is completed. Accordingly, processing of graph 2325
is done with reduced latency for high responsiveness to user
inputs while maintaining synchronization of important multi-
player logic such as accurate distribution of in-game rewards.

FIG. 3 presents an exemplary flowchart illustrating a
method by which decision streams may be provided for syn-
chronizing visual script language processing between net-
worked computers. Flowchart 300 begins when processor
122a of server 120a receives, over network 135, a remote
kickoff stream from client 110a, where client 110a and client
1104 each have a private graph of graph 132 in private graphs
118a and 1185, respectively (block 310). As discussed above,
a remote kickoff stream may begin when a kickoff node is
triggered on a local or private graph, or when a master net
sync node is encountered while processing a private graph.
Thus, the remote kickoff stream may contain a record for the
details of the kickoff node, similar to record 2364, or a record
for the details of the master net sync node, similar to record
236f.

When graph 132 corresponds to graph 2325, where the
kick-off node munition impact 254 has additional private
nodes connected, a private decision stream may be created at
the client where the kick-off node originally triggered, or
client 110a. Thus, prior to receiving the remote kickoff
stream, processor 122a of server 120a may also receive,
synchronize, and distribute private decision stream 234a.
More specifically, processor 122a of server 120a may receive
private decision stream 234a from client 110a over network
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135, synchronize master graphs 128a using private decision
stream 234a, and distribute private decision stream 234a to
the remaining clients over network 135 to synchronize the
other private graphs. In this case, the distributing of private
decision stream 2344 would only be to client 1105 to update
private graphs 118b. As previously discussed, a callback
function may be registered at each client to handle the receiv-
ing of private and master decision streams for synchronizing.

Next, processor 1224 of server 120a creates a master deci-
sion stream using the remote kickoff stream (block 320). If
the remote kickoff stream contains a record similar to record
236a, then the master decision stream may appear similar to
decision stream 234 of FIG. 2B, with only record 2364 popu-
lated. If the remote kickoff stream contains a record similar to
record 2367, then the master decision stream may appear
similar to master decision stream 2345 of FIG. 2D, with only
record 2367 populated. Accordingly, the creation of the mas-
ter decision stream may simply copy the records present in the
provided remote kickoff stream.

Next, processor 122a of server 120a processes master
nodes of the master graph to populate the master decision
stream with records indicating states and actions during the
processing (block 330). Assuming graph 132 corresponds to
graph 2325, processor 122a of server 120a may process those
nodes marked as “master” in graph 2324, or gate 256 and
remote stat 260. Thus, master decision stream 2345 may be
populated with records 236g and 236/ to indicate the states
and actions taken during the processing of gate 256 and report
stat 260, respectively.

Next, processor 1224 of server 120q distributes the master
decision stream to clients 110a and 1105 for synchronizing
private graphs 118a and 1185 (block 340). As previously
discussed, a callback function may be registered at each client
to receive the master decision stream 2345 and update the
private graphs, which may be processed in an identical fash-
ion at each respective client. Accordingly, each client is
updated using a single authoritative master decision stream
234b.

In addition to providing synchronization between net-
worked computers, the decision streams may also be used as
a general purpose networked data distribution system, as any
data may be included as records in the decision stream. Thus,
for example, decision streams may be utilized to allow new
players to join an existing multi-player game session by
including records having all of the relevant game states that
would require updating on the client of the new player.

From the above description it is manifest that various tech-
niques can be used for implementing the concepts described
in the present application without departing from the scope of
those concepts. Moreover, while the concepts have been
described with specific reference to certain implementations,
a person of ordinary skill in the art would recognize that
changes can be made in form and detail without departing
from the spirit and the scope of those concepts. As such, the
described implementations are to be considered in all respects
as illustrative and not restrictive. It should also be understood
that the present application is not limited to the particular
implementations described herein, but many rearrangements,
modifications, and substitutions are possible without depart-
ing from the scope of the present disclosure.

What is claimed is:

1. A computing device for providing decision streams for
synchronizing visual script language processing between net-
worked computers, the computing device comprising:

a memory including a game application and a master graph

of a visual script, wherein the master graph includes a
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plurality of nodes, each of the plurality of nodes having
a synchronization setting being set to private or master;
aprocessor configured to execute the game application to:

receive a remote kickoff stream from one of a plurality of
clients, each ofthe plurality of clients having a private
graph of the visual script, wherein the private graph
specifies an in-game location of a corresponding cli-
ent of the plurality of clients, and wherein the remote
kickoft stream contains data regarding a specific trig-
gered event and is generated for processing the spe-
cific triggered event;

create a master decision stream using the remote kickoff
stream, wherein the master decision stream is created
for utilization by the plurality of clients to synchro-
nize with each other;

process master nodes of the master graph to populate the
master decision stream with records indicating states
and actions during the processing, wherein the master
nodes are specified as requiring global synchroniza-
tion and utilization by the plurality of clients to
enforce synchronization by overriding the private
graph of the corresponding client of the plurality of
clients;

process a private net sync node of the master graph,
wherein the private net sync node sets the synchroni-
zation setting for one or more of the plurality of nodes
to be private to specify that the one or more nodes do
not require synchronization, and wherein the process-
ing of the private net sync node mirrors a processing
performed by at least one of the plurality of clients
without consulting or synchronizing with other one or
more of the plurality of clients;

finalize, in response to processing the private net sync
node, the master decision stream; and

distribute, after finalizing, the master decision stream to
the plurality of clients for synchronizing the private
graph of each of the plurality of clients in response to
processing the private net sync node of the master
graph, wherein the master graph is for global synchro-
nization of the private graphs of the plurality of cli-
ents.

2. The computing device of claim 1, wherein the remote
kickoff stream contains a record for a kick-off node.

3. The computing device of claim 1, wherein the remote
kickoft stream contains a record for a master net sync node.

4. The computing device of claim 1, wherein prior to
receiving the remote kickoff stream, the processor is further
configured to:

receive a private decision stream from the one of the plu-

rality of clients;

synchronize the master graph using the private decision

stream; and

distribute the private decision stream to the plurality of

clients for synchronizing the private graph of each of the
plurality of clients.

5. The computing device of claim 1, wherein the visual
script is editable using a visual script language creation tool
allowing scripting of game logic using a graphical user inter-
face (GUI).

6. The computing device of claim 1, wherein the visual
script is retrieved from a script database based on the in-game
location of a corresponding client of the plurality of clients.

7. The computing device of claim 1, wherein the distribut-
ing of the master decision stream is received by a callback
function registered at each of the plurality of clients.
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8. A method for use by a game server for providing decision
streams for synchronizing visual script language processing
between networked computers, the method comprising:

receiving, by the game server, a remote kickoff stream from

one of a plurality of clients, each of the plurality of
clients having a private graph of a visual script, wherein
the private graph specifies an in-game location of a cor-
responding client of the plurality of clients, and wherein
the remote kickoff stream contains data regarding a spe-
cific triggered event and is generated for processing the
specific triggered event;

creating, by the game server, a master decision stream

using the remote kickoff stream, wherein the master
decision stream is created for utilization by the plurality
of clients to synchronize with each other;

processing, by the game server, master nodes of a master

graph of the visual script to populate the master decision
stream with records indicating states and actions during
the processing, wherein the master graph includes a
plurality of nodes, each of the plurality of nodes having
a synchronization setting being set to private or master,
wherein the master nodes are specified as requiring glo-
bal synchronization and utilization by the plurality of
clients to enforce synchronization by overriding the pri-
vate graph of the corresponding client of the plurality of
clients;

processing, by the game server, a private net sync node of

the master graph, wherein the private net sync node sets
the synchronization setting for one or more of the plu-
rality of nodes to be private to specify that the one or
more nodes do not require synchronization, and wherein
the processing of the private net sync node mirrors a
processing performed by at least one of the plurality of
clients without consulting or synchronizing with other
one or more of the plurality of clients;

finalizing, by the game server, in response to the processing

of the private net sync node, the master decision stream,
wherein the private net sync node sets the synchroniza-
tion setting for one or more of the plurality of nodes to be
private; and

distributing, by the game server, after the finalizing, the

master decision stream to the plurality of clients for
synchronizing the private graph of each of the plurality
of clients in response to the processing of the private net
sync node of the master graph, wherein the master graph
is for global synchronization of the private graphs of the
plurality of clients.

9. The method of claim 8, wherein the remote kickoff
stream contains a record for a kick-off node.

10. The method of claim 8, wherein the remote kickoff
stream contains a record for a master net sync node.

11. The method of claim 8 further comprising, prior to
receiving the remote kickoft stream:

receiving a private decision stream from the one of the

plurality of clients;

synchronizing the master graph using the private decision

stream; and

distributing the private decision stream to the plurality of

clients for synchronizing the private graph of each of the
plurality of clients.

12. The method of claim 8, wherein the visual script is
editable using a visual script language creation tool allowing
scripting of game logic using a graphical user interface
(GUD.

13. The method of claim 8, wherein the visual script is
retrieved from a script database based on the in-game location
of a corresponding client of the plurality of clients.
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14. The method of claim 8, wherein the distributing of the
master decision stream is received by a callback function
registered at each of the plurality of clients.

15. A system for providing decision streams for synchro-
nizing visual script language processing between networked
computers, the system comprising:

aplurality of clients each having a private graph of a visual

script, wherein the private graph specifies an in-game
location of a corresponding client of the plurality of
clients, and wherein the remote kickoff stream contains
dataregarding a specific triggered event and is generated
for processing the specific triggered event;

a network;

a master computing device comprising:

a memory including a game application and a master

graph of the visual script, wherein the master graph

includes a plurality of nodes, each of the plurality of

nodes having a synchronization setting being set to

private or master;

a processor configured to execute the game application

to:

receive, over the network, a remote kickoff stream
from one of the plurality of clients;

create a master decision stream using the remote kick-
off stream, wherein the master decision stream is
created for utilization by the plurality of clients to
synchronize with each other;

process master nodes of the master graph to populate
the master decision stream with records indicating
states and actions during the processing, wherein
the master nodes are specified as requiring global
synchronization and utilization by the plurality of
clients to enforce synchronization by overriding
the private graph of the corresponding client of the
plurality of clients;

process a private net sync node of the master graph,
wherein the private net sync node sets the synchro-
nization setting for one or more of the plurality of

20

25

30

35

12

nodes to be private to specify that the one or more
nodes do not require synchronization, and wherein
the processing of the private net sync node mirrors
a processing performed by at least one of the plu-
rality of clients without consulting or synchroniz-
ing with other one or more of the plurality of cli-
ents;

finalize, in response to processing the private net sync
node, the master decision stream; and

distribute, after finalizing, over the network, the mas-
ter decision stream to the plurality of clients for
synchronizing the private graph of each of the plu-
rality of clients in response to processing the pri-
vate net sync node of the master graph, wherein the

master graph is for global synchronization of the
private graphs of the plurality of clients.

16. The system of claim 15, wherein the remote kickoff
stream contains a record for a kick-off node.

17. The system of claim 15, wherein the remote kickoff
stream contains a record for a master net sync node.

18. The system of claim 15, wherein prior to receiving the
remote kickoff stream, the processor is further configured to:

receive, over the network, a private decision stream from

the one of the plurality of clients;

synchronize the master graph using the private decision

stream; and

distribute, over the network, the private decision stream to

the plurality of clients for synchronizing the private
graph of each of the plurality of clients.

19. The system of claim 15, wherein the visual script is
editable using a visual script language creation tool allowing
scripting of game logic using a graphical user interface
(GUD.

20. The system of claim 15, wherein the visual script is
retrieved from a script database based on the in-game location
of a corresponding client of the plurality of clients.
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